
Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

Jessen Havill
Denison University

Granville, Ohio, USA

DISCOVERING 
COMPUTER 

SCIENCE
Interdisciplinary Problems, 

Principles, and Python 
Programming



Contents

Preface xv

Acknowledgments xxiii

About the author xxv

Chapter 1 ⌅ What is computation? 1
1.1 PROBLEMS AND ABSTRACTION 2
1.2 ALGORITHMS AND PROGRAMS 4
1.3 EFFICIENT ALGORITHMS 11

Organizing a phone tree 11

A smoothing algorithm 13

A better smoothing algorithm 17

1.4 COMPUTERS ARE DUMB 20
Inside a computer 20

Machine language 21

Everything is bits 22

The universal machine 26

1.5 SUMMARY 29
1.6 FURTHER DISCOVERY 30

Chapter 2 ⌅ Elementary computations 31
2.1 WELCOME TO THE CIRCUS 31
2.2 ARITHMETIC 32

Finite precision 34

Division 34

Order of operations 35

Complex numbers 37

2.3 WHAT’S IN A NAME? 38
2.4 USING FUNCTIONS 45

v



vi ⌅ Contents

Built-in functions 45

Strings 47

Modules 51

*2.5 BINARY ARITHMETIC 54
Finite precision 55

Negative integers 56

Designing an adder 57

Implementing an adder 58

2.6 SUMMARY 62
2.7 FURTHER DISCOVERY 62

Chapter 3 ⌅ Visualizing abstraction 65
3.1 DATA ABSTRACTION 66
3.2 VISUALIZATION WITH TURTLES 70

Drawing with iteration 72

3.3 FUNCTIONAL ABSTRACTION 76
Function parameters 78

Let’s plant a garden 84

3.4 PROGRAMMING IN STYLE 89
Program structure 89

Documentation 91

Descriptive names and magic numbers 95

3.5 A RETURN TO FUNCTIONS 97
Return vs. print 100

3.6 SCOPE AND NAMESPACES 103
Local namespaces 104

The global namespace 107

3.7 SUMMARY 111
3.8 FURTHER DISCOVERY 112

Chapter 4 ⌅ Growth and decay 113
4.1 DISCRETE MODELS 114

Managing a fishing pond 114

Measuring network value 121

Organizing a concert 124

4.2 VISUALIZING POPULATION CHANGES 136
4.3 CONDITIONAL ITERATION 140



Contents ⌅ vii

*4.4 CONTINUOUS MODELS 145
Di↵erence equations 145

Radiocarbon dating 148

Tradeo↵s between accuracy and time 150

Propagation of errors 152

Simulating an epidemic 153

*4.5 NUMERICAL ANALYSIS 159
The harmonic series 159

Approximating ⇡ 162

Approximating square roots 164

4.6 SUMMING UP 167
4.7 FURTHER DISCOVERY 171
4.8 PROJECTS 171

Project 4.1 Parasitic relationships 171

Project 4.2 Financial calculators 173

*Project 4.3 Market penetration 177

*Project 4.4 Wolves and moose 180

Chapter 5 ⌅ Forks in the road 185
5.1 RANDOM WALKS 185

A random walk in Monte Carlo 192

Histograms 195

*5.2 PSEUDORANDOM NUMBER GENERATORS 200
Implementation 201

Testing randomness 203

*5.3 SIMULATING PROBABILITY DISTRIBUTIONS 205
The central limit theorem 206

5.4 BACK TO BOOLEANS 209
Short circuit evaluation 212

Complex expressions 214

*Using truth tables 216

Many happy returns 218

5.5 A GUESSING GAME 224
5.6 SUMMARY 233
5.7 FURTHER DISCOVERY 234
5.8 PROJECTS 234



viii ⌅ Contents

Project 5.1 The magic of polling 234

Project 5.2 Escape! 237

Chapter 6 ⌅ Text, documents, and DNA 241
6.1 COUNTING WORDS 242
6.2 TEXT DOCUMENTS 250

Reading from text files 250

Writing to text files 253

Reading from the web 254

6.3 ENCODING STRINGS 259
Indexing and slicing 259

Creating modified strings 261

Encoding characters 263

6.4 LINEAR-TIME ALGORITHMS 270
Asymptotic time complexity 274

6.5 ANALYZING TEXT 279
Counting and searching 279

A concordance 284

6.6 COMPARING TEXTS 289
*6.7 GENOMICS 297

A genomics primer 297

Basic DNA analysis 301

Transforming sequences 302

Comparing sequences 304

Reading sequence files 306

6.8 SUMMARY 312
6.9 FURTHER DISCOVERY 313

6.10 PROJECTS 313
Project 6.1 Polarized politics 313

*Project 6.2 Finding genes 316

Chapter 7 ⌅ Designing programs 321
7.1 HOW TO SOLVE IT 322

Understand the problem 323

Design an algorithm 324

Implement your algorithm as a program 327

Analyze your program for clarity, correctness, and e�ciency 330



Contents ⌅ ix

*7.2 DESIGN BY CONTRACT 331
Preconditions and postconditions 331

Checking parameters 332

Assertions 334

*7.3 TESTING 340
Unit testing 340

Regression testing 342

Designing unit tests 343

Testing floating point values 347

7.4 SUMMARY 350
7.5 FURTHER DISCOVERY 350

Chapter 8 ⌅ Data analysis 351
8.1 SUMMARIZING DATA 351
8.2 CREATING AND MODIFYING LISTS 360

List accumulators, redux 360

Lists are mutable 361

Tuples 365

List operators and methods 366

*List comprehensions 368

8.3 FREQUENCIES, MODES, AND HISTOGRAMS 373
Tallying values 373

Dictionaries 374

8.4 READING TABULAR DATA 384
*8.5 DESIGNING EFFICIENT ALGORITHMS 390

A first algorithm 391

A more elegant algorithm 399

A more e�cient algorithm 400

*8.6 LINEAR REGRESSION 403
*8.7 DATA CLUSTERING 409

Defining similarity 410

A k-means clustering example 411

Implementing k-means clustering 414

Locating bicycle safety programs 416

8.8 SUMMARY 421
8.9 FURTHER DISCOVERY 421



x ⌅ Contents

8.10 PROJECTS 422
Project 8.1 Climate change 422

Project 8.2 Does education influence unemployment? 425

Project 8.3 Maximizing profit 427

Project 8.4 Admissions 428

*Project 8.5 Preparing for a 100-year flood 430

Project 8.6 Voting methods 435

Project 8.7 Heuristics for traveling salespeople 438

Chapter 9 ⌅ Flatland 443
9.1 TWO-DIMENSIONAL DATA 443
9.2 THE GAME OF LIFE 449

Creating a grid 451

Initial configurations 452

Surveying the neighborhood 453

Performing one pass 454

Updating the grid 457

9.3 DIGITAL IMAGES 461
Colors 461

Image filters 463

Transforming images 467

9.4 SUMMARY 471
9.5 FURTHER DISCOVERY 471
9.6 PROJECTS 471

Project 9.1 Modeling segregation 471

Project 9.2 Modeling ferromagnetism 473

Project 9.3 Growing dendrites 474

Chapter 10 ⌅ Self-similarity and recursion 477
10.1 FRACTALS 477

A fractal tree 479

A fractal snowflake 481

10.2 RECURSION AND ITERATION 488
Solving a problem recursively 491

Palindromes 492

Guessing passwords 495

10.3 THE MYTHICAL TOWER OF HANOI 500



Contents ⌅ xi

*Is the end of the world nigh? 502

10.4 RECURSIVE LINEAR SEARCH 503
E�ciency of recursive linear search 505

10.5 DIVIDE AND CONQUER 508
Buy low, sell high 508

Navigating a maze 512

*10.6 LINDENMAYER SYSTEMS 518
Formal grammars 518

Implementing L-systems 522

10.7 SUMMARY 525
10.8 FURTHER DISCOVERY 526
10.9 PROJECTS 526

*Project 10.1 Lindenmayer’s beautiful plants 526

Project 10.2 Gerrymandering 531

Project 10.3 Percolation 536

Chapter 11 ⌅ Organizing data 541
11.1 BINARY SEARCH 542

E�ciency of iterative binary search 546

A spelling checker 548

Recursive binary search 549

E�ciency of recursive binary search 550

11.2 SELECTION SORT 553
Implementing selection sort 553

E�ciency of selection sort 557

Querying data 558

11.3 INSERTION SORT 563
Implementing insertion sort 564

E�ciency of insertion sort 566

11.4 EFFICIENT SORTING 570
Internal vs. external sorting 574

E�ciency of merge sort 574

*11.5 TRACTABLE AND INTRACTABLE ALGORITHMS 577
Hard problems 579

11.6 SUMMARY 580
11.7 FURTHER DISCOVERY 581



xii ⌅ Contents

11.8 PROJECTS 581
Project 11.1 Creating a searchable database 581

Project 11.2 Binary search trees 581

Chapter 12 ⌅ Networks 587
12.1 MODELING WITH GRAPHS 588

Making friends 590

12.2 SHORTEST PATHS 594
Finding the actual paths 598

12.3 IT’S A SMALL WORLD. . . 601
Clustering coe�cients 603

Scale-free networks 605

12.4 RANDOM GRAPHS 608
12.5 SUMMARY 611
12.6 FURTHER DISCOVERY 611
12.7 PROJECTS 612

Project 12.1 Di↵usion of ideas and influence 612

Project 12.2 Slowing an epidemic 614

Project 12.3 The Oracle of Bacon 616

Chapter 13 ⌅ Abstract data types 621
13.1 DESIGNING CLASSES 622

Implementing a class 625

Documenting a class 632

13.2 OPERATORS AND SPECIAL METHODS 637
String representations 637

Arithmetic 638

Comparison 640

Indexing 642

13.3 MODULES 645
Namespaces, redux 646

13.4 A FLOCKING SIMULATION 648
The World ADT 649

The Boid ADT 655

13.5 A STACK ADT 665
13.6 A DICTIONARY ADT 671

Hash tables 672



Contents ⌅ xiii

Implementing a hash table 673

Implementing indexing 676

ADTs vs. data structures 678

13.7 SUMMARY 682
13.8 FURTHER DISCOVERY 682
13.9 PROJECTS 683

Project 13.1 Tracking GPS coordinates 683

Project 13.2 Economic mobility 687

Project 13.3 Slime mold aggregation 690

Project 13.4 Boids in space 692

Appendix A ⌅ Installing Python 697
A.1 AN INTEGRATED DISTRIBUTION 697
A.2 MANUAL INSTALLATION 697

Appendix B ⌅ Python library reference 701
B.1 MATH MODULE 701
B.2 TURTLE METHODS 702
B.3 SCREEN METHODS 703
B.4 MATPLOTLIB.PYPLOT MODULE 704
B.5 RANDOM MODULE 704
B.6 STRING METHODS 705
B.7 LIST METHODS 706
B.8 IMAGE MODULE 706
B.9 SPECIAL METHODS 707

Bibliography 709

Index 713





Preface

I n my view, an introductory computer science course should strive to accomplish
three things. First, it should demonstrate to students how computing has become

a powerful mode of inquiry, and a vehicle of discovery, in a wide variety of disciplines.
This orientation is also inviting to students of the natural and social sciences, who
increasingly benefit from an introduction to computational thinking, beyond the
limited “black box” recipes often found in manuals. Second, the course should engage
students in computational problem solving, and lead them to discover the power of
abstraction, e�ciency, and data organization in the design of their solutions. Third,
the course should teach students how to implement their solutions as computer
programs. In learning how to program, students more deeply learn the core principles,
and experience the thrill of seeing their solutions come to life.

Unlike most introductory computer science textbooks, which are organized
around programming language constructs, I deliberately lead with interdisciplinary
problems and techniques. This orientation is more interesting to a more diverse
audience, and more accurately reflects the role of programming in problem solv-
ing and discovery. A computational discovery does not, of course, originate in a
programming language feature in search of an application. Rather, it starts with
a compelling problem which is modeled and solved algorithmically, by leveraging
abstraction and prior experience with similar problems. Only then is the solution
implemented as a program.

Like most introductory computer science textbooks, I introduce programming
skills in an incremental fashion, and include many opportunities for students to prac-
tice them. The topics in this book are arranged to ease students into computational
thinking, and encourage them to incrementally build on prior knowledge. Each
chapter focuses on a general class of problems that is tackled by new algorithmic
techniques and programming language features. My hope is that students will leave
the course, not only with strong programming skills, but with a set of problem
solving strategies and simulation techniques that they can apply in their future
work, whether or not they take another computer science course.

I use Python to introduce computer programming for two reasons. First, Python’s
intuitive syntax allows students to focus on interesting problems and powerful
principles, without unnecessary distractions. Learning how to think algorithmically
is hard enough without also having to struggle with a non-intuitive syntax. Second,
the expressiveness of Python (in particular, low-overhead lists and dictionaries)
expands tremendously the range of accessible problems in the introductory course.
Teaching with Python over the last ten years has been a revelation; introductory
computer science has become fun again.

xv



xvi ⌅ Preface

Web resources

The text, exercises, and projects often refer to files on the book’s accompanying
web site, which can be found at

http://discoverCS.denison.edu .

This web site also includes pointers for further exploration, links to additional
documentation, and errata.

To students

Learning how to solve computational problems and implement them as computer
programs requires daily practice. Like an athlete, you will get out of shape and fall
behind quickly if you skip it. There are no shortcuts. Your instructor is there to
help, but he or she cannot do the work for you.

With this in mind, it is important that you type in and try the examples
throughout the text, and then go beyond them. Be curious! There are numbered
“Reflection” questions throughout the book that ask you to stop and think about, or
apply, something that you just read. Often, the question is answered in the book
immediately thereafter, so that you can check your understanding, but peeking
ahead will rob you of an important opportunity.

There are many opportunities to delve into topics more deeply. Boxes scattered
throughout the text briefly introduce related, but more technical, topics. For the
most part, these are not strictly required to understand what comes next, but I
encourage you to read them anyway. In the “Further discovery” section of each
chapter, you can find additional pointers to explore chapter topics in more depth.

At the end of most sections are several programming exercises that ask you
to further apply concepts from that section. Often, the exercises assume that you
have already worked through all of the examples in that section. All later chapters
conclude with a selection of more involved interdisciplinary projects that you may
be asked by your instructor to tackle.

The book assumes no prior knowledge of computer science. However, it does
assume a modest comfort with high school algebra and mathematical functions.
Occasionally, trigonometry is mentioned, as is the idea of convergence to a limit,
but these are not crucial to an understanding of the main topics in this book.

To instructors

This book may be appropriate for a traditional CS1 course for majors, a CS0 course
for non-majors (at a slower pace and omitting more material), or an introductory
computing course for students in the natural and/or social sciences.

As suggested above, I emphasize computer science principles and the role of
abstraction, both functional and data, throughout the book. I motivate functions
as implementations of functional abstractions, and point out that strings, lists,
and dictionaries are all abstract data types that allow us to solve more interesting
problems than would otherwise be possible. I introduce the idea of time complexity



Preface ⌅ xvii

Chapter 1
What is 

computation?

Chapter 2
Elementary 

computations

Chapter 3
Visualizing 
abstraction

Chapter 4
Growth and decay

Chapter 5
Forks in the road

Chapter 6
Text, documents, 

and DNA

Chapter 7
Designing 
programs

Chapter 8
Data analysis

Chapter 9
Flatland

Chapter 10
Self-similarity and 

recursion

Chapter 11
Organizing data

Chapter 12
Networks

Chapter 13
Abstract data 

types

Figure 1 An overview of chapter dependencies.

intuitively, without formal definitions, in the first chapter and return to it several
times as more sophisticated algorithms are developed. The book uses a spiral
approach for many topics, returning to them repeatedly in increasingly complex
contexts. Where appropriate, I also weave into the book topics that are traditionally
left for later computer science courses. A few of these are presented in boxes that
may be covered at your discretion. None of these topics is introduced rigorously, as
they would be in a data structures course. Rather, I introduce them informally and
intuitively to give students a sense of the problems and techniques used in computer
science. I hope that the tables below will help you navigate the book, and see where
particular topics are covered.

This book contains over 600 end-of-section exercises and over 300 in-text reflection
questions that may be assigned as homework or discussed in class. At the end of
most chapters is a selection of projects (about 30 in all) that students may work on
independently or in pairs over a longer time frame. I believe that projects like these
are crucial for students to develop both problem solving skills and an appreciation
for the many fascinating applications of computer science.

Because this book is intended for a student who may take additional courses in
computer science and learn other programming languages, I intentionally omit some
features of Python that are not commonly found elsewhere (e.g., simultaneous swap,
chained comparisons, enumerate in for loops). You may, of course, supplement
with these additional syntactical features.

There is more in this book than can be covered in a single semester, giving an
instructor the opportunity to tailor the content to his or her particular situation and
interests. Generally speaking, as illustrated in Figure 1, Chapters 1–6 and 8 form the
core of the book, and should be covered sequentially. The remaining chapters can be
covered, partially or entirely, at your discretion, although I would expect that most
instructors will cover at least parts of Chapters 7, 10, 11, and 13. Chapter 7 contains



xviii ⌅ Preface

additional material on program design, including design by contract, assertions and
unit testing that may be skipped without consequences for later chapters. Chapters
9–13 are, more or less, independent of each other. Sections marked with an asterisk
are optional, in the sense that they are not assumed for future sections in that
chapter. When projects depend on optional sections, they are also marked with an
asterisk, and the dependency is stated at the beginning of the project.

Chapter outlines

The following tables provide brief overviews of each chapter. Each table’s three
columns, reflecting the three parts of the book’s subtitle, provide three lenses through
which to view the chapter. The first column lists a selection of representative problems
that are used to motivate the material. The second column lists computer science
principles that are introduced in that chapter. Finally, the third column lists Python
programming topics that are either introduced or reinforced in that chapter to
implement the principles and/or solve the problems.

Chaper 1. What is computation?

Sample problems Principles Programming

• digital music
• search engines
• GPS devices
• smoothing data
• phone trees

• problems, input/output
• abstraction
• algorithms and programs
• computer architecture
• binary representations
• time complexity
• Turing machine

—

Chapter 2. Elementary computations

Sample problems Principles Programming

• wind chill
• geometry
• compounding

interest
• Mad Libs

• finite precision
• names as references
• using functional

abstractions
• binary addition

• int and float numeric types
• arithmetic and the math module
• variable names and assignment
• calling built-in functions
• using strings, + and * operators
• print and input

Chapter 3. Visualizing abstraction

Sample problems Principles Programming

• visualizing an
archaeological dig

• random walks
• ideal gas
• groundwater flow
• demand functions

• using abstract data types
• creating functional

abstractions
• basic functional

decomposition

• using classes and objects
• turtle module
• basic for loops
• writing functions
• namespaces
• docstrings and comments



Preface ⌅ xix

Chapter 4. Growth and decay

Sample problems Principles Programming

• network value
• demand and profit
• loans and investing
• bacterial growth
• radiocarbon dating
• di↵usion models
– SIR, SIS, Bass

• competition models
– Nicholson-Bailey
– Lotka-Volterra
– indirect

• accumulators
• list accumulators
• di↵erence equations
• approximating continuous

models
• accuracy vs. time
• error propagation
• numerical approximation
• classes of growth

• for loops
• format strings
• range
• matplotlib
• appending to lists
• while loops

Chapter 5. Forks in the road

Sample problems Principles Programming

• random walks
• guessing games
• polling and

sampling
• particle escape

• Monte Carlo simulation
• pseudorandom number

generators
• simulating probabilities
• flag variables
• using uniform and normal

distributions
• DeMorgan’s laws

• random module
• if/elif/else
• comparison operators
• Boolean operators
• matplotlib histograms
• while loops

Chapter 6. Text, documents, and DNA

Sample problems Principles Programming

• word count
• textual analysis
• parsing XML
• checksums
• concordances
• detecting plagiarism
• congressional votes
• genomics

• ASCII, Unicode
• linear-time algorithms
• asymptotic time complexity
• linear search
• dot plots
• string accumulators

• str class and methods
• iterating over strings
• indexing and slices
• iterating over indices
• reading and writing text files
• nested loops

Chapter 7. Designing programs

Sample problems Principles Programming

• word frequency
analysis

• problem solving
• top-down design
• pre and postconditions
• assertions
• unit testing

• assert statement
• conditional execution

of main
• writing modules



xx ⌅ Preface

Chapter 8. Data analysis

Sample problems Principles Programming

• 100-year floods
• traveling salesman
• Mohs scale
• meteorite sites
• zebra migration
• tumor diagnosis
• education levels
• supply and demand
• voting methods

• histograms
• hash tables
• tabular data files
• e�cient algorithms
• linear regression
• k-means clustering
• heuristics

• list class
• iterating over lists
• indexing and slicing
• list operators and methods
• lists in memory; mutability
• list parameters
• tuples
• list comprehensions
• dictionaries

Chapter 9. Flatland

Sample problems Principles Programming

• earthquake data
• Game of Life
• image filters
• racial segregation
• ferromagnetism
• dendrites

• 2-D data
• cellular automata
• digital images
• color models

• 2-D data in list of lists
• nested loops
• 2-D data in a dictionary

Chapter 10. Self-similarity and recursion

Sample problems Principles Programming

• fractals
• cracking passwords
• Tower of Hanoi
• maximizing profit
• path through a maze
• Lindenmayer system
• electoral districting
• percolation

• self-similarity
• recursion
• linear search
• recurrence relations
• divide and conquer
• depth-first search
• grammars

• writing recursive functions

Chapter 11. Organizing data

Sample problems Principles Programming

• spell check
• querying data sets

• binary search
• recurrence relations
• basic sorting algorithms
• quadratic-time algorithms
• parallel lists
• merge sort
• intractability
• P=NP (intuition)
• Moore’s law
• binary search trees

• nested loops
• writing recursive functions



Preface ⌅ xxi

Chapter 12. Networks

Sample problems Principles Programming

• Facebook, Twitter,
web graphs

• di↵usion of ideas
• epidemics
• Oracle of Bacon

• graphs
• adjacency list
• adjacency matrix
• breadth-first search
• distance and shortest paths
• depth-first search
• small-world networks
• scale-free networks
• clustering coe�cient
• uniform random graphs

• dictionaries

Chapter 13. Abstract data types

Sample problems Principles Programming

• data sets
• genomic sequences
• rational numbers
• flocking behavior
• slime mold

aggregation

• abstract data types
• data structures
• stacks
• hash tables
• agent-based simulation
• swarm intelligence

• writing classes
• special methods
• overriding operators
• modules

Software assumptions

To follow along in this book and complete the exercises, you will need to have installed
Python 3.4 (or later) on your computer, and have access to IDLE or another
programming environment. The book also assumes that you have installed the
matplotlib and numpy modules. Please refer to Appendix A for more information.

Errata

While I (and my students) have ferreted out many errors, readers will inevitably
find more. You can find an up-to-date list of errata on the book web site. If
you find an error in the text or have another suggestion, please let me know at
havill@denison.edu.




