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Preface

I n my view, an introductory computer science course should strive to accomplish
three things. First, it should demonstrate to students how computing has become

a powerful mode of inquiry, and a vehicle of discovery, in a wide variety of disciplines.
This orientation is also inviting to students of the natural and social sciences, who
increasingly benefit from an introduction to computational thinking, beyond the
limited “black box” recipes often found in manuals. Second, the course should engage
students in computational problem solving, and lead them to discover the power of
abstraction, e�ciency, and data organization in the design of their solutions. Third,
the course should teach students how to implement their solutions as computer
programs. In learning how to program, students more deeply learn the core principles,
and experience the thrill of seeing their solutions come to life.

Unlike most introductory computer science textbooks, which are organized
around programming language constructs, I deliberately lead with interdisciplinary
problems and techniques. This orientation is more interesting to a more diverse
audience, and more accurately reflects the role of programming in problem solv-
ing and discovery. A computational discovery does not, of course, originate in a
programming language feature in search of an application. Rather, it starts with
a compelling problem which is modeled and solved algorithmically, by leveraging
abstraction and prior experience with similar problems. Only then is the solution
implemented as a program.

Like most introductory computer science textbooks, I introduce programming
skills in an incremental fashion, and include many opportunities for students to prac-
tice them. The topics in this book are arranged to ease students into computational
thinking, and encourage them to incrementally build on prior knowledge. Each
chapter focuses on a general class of problems that is tackled by new algorithmic
techniques and programming language features. My hope is that students will leave
the course, not only with strong programming skills, but with a set of problem
solving strategies and simulation techniques that they can apply in their future
work, whether or not they take another computer science course.

I use Python to introduce computer programming for two reasons. First, Python’s
intuitive syntax allows students to focus on interesting problems and powerful
principles, without unnecessary distractions. Learning how to think algorithmically
is hard enough without also having to struggle with a non-intuitive syntax. Second,
the expressiveness of Python (in particular, low-overhead lists and dictionaries)
expands tremendously the range of accessible problems in the introductory course.
Teaching with Python over the last ten years has been a revelation; introductory
computer science has become fun again.

xv
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Web resources

The text, exercises, and projects often refer to files on the book’s accompanying
web site, which can be found at

http://discoverCS.denison.edu .

This web site also includes pointers for further exploration, links to additional
documentation, and errata.

To students

Learning how to solve computational problems and implement them as computer
programs requires daily practice. Like an athlete, you will get out of shape and fall
behind quickly if you skip it. There are no shortcuts. Your instructor is there to
help, but he or she cannot do the work for you.

With this in mind, it is important that you type in and try the examples
throughout the text, and then go beyond them. Be curious! There are numbered
“Reflection” questions throughout the book that ask you to stop and think about, or
apply, something that you just read. Often, the question is answered in the book
immediately thereafter, so that you can check your understanding, but peeking
ahead will rob you of an important opportunity.

There are many opportunities to delve into topics more deeply. Boxes scattered
throughout the text briefly introduce related, but more technical, topics. For the
most part, these are not strictly required to understand what comes next, but I
encourage you to read them anyway. In the “Further discovery” section of each
chapter, you can find additional pointers to explore chapter topics in more depth.

At the end of most sections are several programming exercises that ask you
to further apply concepts from that section. Often, the exercises assume that you
have already worked through all of the examples in that section. All later chapters
conclude with a selection of more involved interdisciplinary projects that you may
be asked by your instructor to tackle.

The book assumes no prior knowledge of computer science. However, it does
assume a modest comfort with high school algebra and mathematical functions.
Occasionally, trigonometry is mentioned, as is the idea of convergence to a limit,
but these are not crucial to an understanding of the main topics in this book.

To instructors

This book may be appropriate for a traditional CS1 course for majors, a CS0 course
for non-majors (at a slower pace and omitting more material), or an introductory
computing course for students in the natural and/or social sciences.

As suggested above, I emphasize computer science principles and the role of
abstraction, both functional and data, throughout the book. I motivate functions
as implementations of functional abstractions, and point out that strings, lists,
and dictionaries are all abstract data types that allow us to solve more interesting
problems than would otherwise be possible. I introduce the idea of time complexity
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Figure 1 An overview of chapter dependencies.

intuitively, without formal definitions, in the first chapter and return to it several
times as more sophisticated algorithms are developed. The book uses a spiral
approach for many topics, returning to them repeatedly in increasingly complex
contexts. Where appropriate, I also weave into the book topics that are traditionally
left for later computer science courses. A few of these are presented in boxes that
may be covered at your discretion. None of these topics is introduced rigorously, as
they would be in a data structures course. Rather, I introduce them informally and
intuitively to give students a sense of the problems and techniques used in computer
science. I hope that the tables below will help you navigate the book, and see where
particular topics are covered.

This book contains over 600 end-of-section exercises and over 300 in-text reflection
questions that may be assigned as homework or discussed in class. At the end of
most chapters is a selection of projects (about 30 in all) that students may work on
independently or in pairs over a longer time frame. I believe that projects like these
are crucial for students to develop both problem solving skills and an appreciation
for the many fascinating applications of computer science.

Because this book is intended for a student who may take additional courses in
computer science and learn other programming languages, I intentionally omit some
features of Python that are not commonly found elsewhere (e.g., simultaneous swap,
chained comparisons, enumerate in for loops). You may, of course, supplement
with these additional syntactical features.

There is more in this book than can be covered in a single semester, giving an
instructor the opportunity to tailor the content to his or her particular situation and
interests. Generally speaking, as illustrated in Figure 1, Chapters 1–6 and 8 form the
core of the book, and should be covered sequentially. The remaining chapters can be
covered, partially or entirely, at your discretion, although I would expect that most
instructors will cover at least parts of Chapters 7, 10, 11, and 13. Chapter 7 contains
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additional material on program design, including design by contract, assertions and
unit testing that may be skipped without consequences for later chapters. Chapters
9–13 are, more or less, independent of each other. Sections marked with an asterisk
are optional, in the sense that they are not assumed for future sections in that
chapter. When projects depend on optional sections, they are also marked with an
asterisk, and the dependency is stated at the beginning of the project.

Chapter outlines

The following tables provide brief overviews of each chapter. Each table’s three
columns, reflecting the three parts of the book’s subtitle, provide three lenses through
which to view the chapter. The first column lists a selection of representative problems
that are used to motivate the material. The second column lists computer science
principles that are introduced in that chapter. Finally, the third column lists Python
programming topics that are either introduced or reinforced in that chapter to
implement the principles and/or solve the problems.

Chaper 1. What is computation?

Sample problems Principles Programming

• digital music
• search engines
• GPS devices
• smoothing data
• phone trees

• problems, input/output
• abstraction
• algorithms and programs
• computer architecture
• binary representations
• time complexity
• Turing machine

—

Chapter 2. Elementary computations

Sample problems Principles Programming

• wind chill
• geometry
• compounding

interest
• Mad Libs

• finite precision
• names as references
• using functional

abstractions
• binary addition

• int and float numeric types
• arithmetic and the math module
• variable names and assignment
• calling built-in functions
• using strings, + and * operators
• print and input

Chapter 3. Visualizing abstraction

Sample problems Principles Programming

• visualizing an
archaeological dig

• random walks
• ideal gas
• groundwater flow
• demand functions

• using abstract data types
• creating functional

abstractions
• basic functional

decomposition

• using classes and objects
• turtle module
• basic for loops
• writing functions
• namespaces
• docstrings and comments
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Chapter 4. Growth and decay

Sample problems Principles Programming

• network value
• demand and profit
• loans and investing
• bacterial growth
• radiocarbon dating
• di↵usion models
– SIR, SIS, Bass

• competition models
– Nicholson-Bailey
– Lotka-Volterra
– indirect

• accumulators
• list accumulators
• di↵erence equations
• approximating continuous

models
• accuracy vs. time
• error propagation
• numerical approximation
• classes of growth

• for loops
• format strings
• range
• matplotlib
• appending to lists
• while loops

Chapter 5. Forks in the road

Sample problems Principles Programming

• random walks
• guessing games
• polling and

sampling
• particle escape

• Monte Carlo simulation
• pseudorandom number

generators
• simulating probabilities
• flag variables
• using uniform and normal

distributions
• DeMorgan’s laws

• random module
• if/elif/else
• comparison operators
• Boolean operators
• matplotlib histograms
• while loops

Chapter 6. Text, documents, and DNA

Sample problems Principles Programming

• word count
• textual analysis
• parsing XML
• checksums
• concordances
• detecting plagiarism
• congressional votes
• genomics

• ASCII, Unicode
• linear-time algorithms
• asymptotic time complexity
• linear search
• dot plots
• string accumulators

• str class and methods
• iterating over strings
• indexing and slices
• iterating over indices
• reading and writing text files
• nested loops

Chapter 7. Designing programs

Sample problems Principles Programming

• word frequency
analysis

• problem solving
• top-down design
• pre and postconditions
• assertions
• unit testing

• assert statement
• conditional execution

of main
• writing modules
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Chapter 8. Data analysis

Sample problems Principles Programming

• 100-year floods
• traveling salesman
• Mohs scale
• meteorite sites
• zebra migration
• tumor diagnosis
• education levels
• supply and demand
• voting methods

• histograms
• hash tables
• tabular data files
• e�cient algorithms
• linear regression
• k-means clustering
• heuristics

• list class
• iterating over lists
• indexing and slicing
• list operators and methods
• lists in memory; mutability
• list parameters
• tuples
• list comprehensions
• dictionaries

Chapter 9. Flatland

Sample problems Principles Programming

• earthquake data
• Game of Life
• image filters
• racial segregation
• ferromagnetism
• dendrites

• 2-D data
• cellular automata
• digital images
• color models

• 2-D data in list of lists
• nested loops
• 2-D data in a dictionary

Chapter 10. Self-similarity and recursion

Sample problems Principles Programming

• fractals
• cracking passwords
• Tower of Hanoi
• maximizing profit
• path through a maze
• Lindenmayer system
• electoral districting
• percolation

• self-similarity
• recursion
• linear search
• recurrence relations
• divide and conquer
• depth-first search
• grammars

• writing recursive functions

Chapter 11. Organizing data

Sample problems Principles Programming

• spell check
• querying data sets

• binary search
• recurrence relations
• basic sorting algorithms
• quadratic-time algorithms
• parallel lists
• merge sort
• intractability
• P=NP (intuition)
• Moore’s law
• binary search trees

• nested loops
• writing recursive functions
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Chapter 12. Networks

Sample problems Principles Programming

• Facebook, Twitter,
web graphs

• di↵usion of ideas
• epidemics
• Oracle of Bacon

• graphs
• adjacency list
• adjacency matrix
• breadth-first search
• distance and shortest paths
• depth-first search
• small-world networks
• scale-free networks
• clustering coe�cient
• uniform random graphs

• dictionaries

Chapter 13. Abstract data types

Sample problems Principles Programming

• data sets
• genomic sequences
• rational numbers
• flocking behavior
• slime mold

aggregation

• abstract data types
• data structures
• stacks
• hash tables
• agent-based simulation
• swarm intelligence

• writing classes
• special methods
• overriding operators
• modules

Software assumptions

To follow along in this book and complete the exercises, you will need to have installed
Python 3.4 (or later) on your computer, and have access to IDLE or another
programming environment. The book also assumes that you have installed the
matplotlib and numpy modules. Please refer to Appendix A for more information.

Errata

While I (and my students) have ferreted out many errors, readers will inevitably
find more. You can find an up-to-date list of errata on the book web site. If
you find an error in the text or have another suggestion, please let me know at
havill@denison.edu.




